精英家教网 > 高中数学 > 题目详情
10.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}\overrightarrow{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值为$\frac{29}{18}$.

分析 利用等腰梯形的性质结合向量的数量积公式将所求表示为关于λ的代数式,根据具体的形式求最值.

解答 解:由题意,得到AD=BC=CD=1,所以$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AB}+\overrightarrow{BE}$)•($\overrightarrow{AD}+\overrightarrow{DF}$)=($\overrightarrow{AB}+λ\overrightarrow{BC}$)•($\overrightarrow{AD}+\frac{1}{9λ}\overrightarrow{DC}$)
=$\overrightarrow{AB}•\overrightarrow{AD}+λ\overrightarrow{BC}•\overrightarrow{AD}+\frac{1}{9λ}\overrightarrow{AB}•\overrightarrow{DC}$$+\frac{1}{9}\overrightarrow{BC}•\overrightarrow{DC}$=2×1×cos60°+λ1×1×cos60°+$\frac{1}{9λ}$×2×1+$\frac{1}{9}$×1×1×cos120°
=1+$\frac{λ}{2}$+$\frac{2}{9λ}$-$\frac{1}{18}$≥$\frac{17}{18}$+$\frac{2}{3}$=$\frac{29}{18}$(当且仅当$\frac{λ}{2}=\frac{2}{9λ}$时等号成立);
故答案为:$\frac{29}{18}$.

点评 本题考查了等腰梯形的性质以及向量的数量积公式的运用、基本不等式求最值;关键是正确表示所求,利用基本不等式求最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某工厂36名工人年龄数据如图:
工人编号年龄工人编号年龄工人编号年龄工人编号年龄
1
2
3
4
5
6
7
8
9
40
44
40
41
33
40
45
42
43
10
11
12
13
14
15
16
17
18
36
31
38
39
43
45
39
38
36
19
20
21
22
23
24
25
26
27
27
43
41
37
34
42
37
44
42
28
29
30
31
32
33
34
35
36
34
39
43
38
42
53
37
49
39
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值$\overline{x}$和方差s2
(3)36名工人中年龄在$\overline{x}$-s和$\overline{x}$+s之间有多少人?所占百分比是多少(精确到0.01%)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.
(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马P-ABCD的体积为V1,四面体EBCD的体积为V2,求$\frac{V_1}{V_2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,(a>b>0)的离心率$\frac{\sqrt{2}}{2}$,点(2,$\sqrt{2}$)在C上.
(1)求椭圆C的方程;
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 (a>0,b>0)的一条渐近线过点(2,$\sqrt{3}$),且双曲线的一个焦点在抛物线y2=4$\sqrt{7}$x的准线上,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{21}$-$\frac{{y}^{2}}{28}$=1B.$\frac{{x}^{2}}{28}$-$\frac{{y}^{2}}{21}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁RP)∩Q=(  )
A.[0,1)B.(0,2]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}x+\frac{2}{x}-3,x≥1\\ lg({x^2}+1),x<1\end{array}$,则f(f(-3))=0,f(x)的最小值是$2\sqrt{2}-3$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F(-1,0),离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的标准方程;
(2)设P(1,0),Q($\frac{5}{4}$,0),过P的直线l交椭圆C于A,B两点,求$\overrightarrow{QA}•\overrightarrow{QB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2$\sqrt{3}$cosθ.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.

查看答案和解析>>

同步练习册答案