精英家教网 > 高中数学 > 题目详情

集合N* ,N*},    ,若取最大值时,,则实数的取值范围是 (          )

A.-5                    B.          C.    D.

B


解析:

如图 所表示区域为阴影部分的所有整点(横坐标,纵坐标均为整数),对于直线t: ,即  ,即为

直线的纵截距的相反数,当直线位于阴影部分

最右端的整点时,纵截距最小,最大,当 ,

取最大值,

  ,  又 (4 ,1) ,  

但 (4 ,1) ,  即 

    即   

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a1=1,Sn+1=2Sn
n(n+1)
2
+1
,其中Sn是数列an的前n项的和,若定义△an=an+1-an,则集合S=n|n∈N*,△(△an)≥-2011的元素个数是(  )
A、9B、10C、11D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设A是由n×n个实数组成的n行n列的数表,其中aij(i,j=1,2,3…,n)表示位于第i行第j列的实数,且aij∈{1,-1}.记S(n,n)为所有这样的数表构成的集合.
 a11  a12  a1n
 a21  a22  …  a2n




 …

 an1  an2  …  ann
对于A∈S(n,n),记ri(A)为A的第i行各数之积,Cj(A)为A的第j列各数之积.令l(A)=
n
i=1
ri(A)+
n
j=1
Cj(A).
(Ⅰ)对如下数表A∈S(4,4),求l(A)的值;
1 1 -1 -1
1 -1 1 1
1 -1 -1 1
-1 -1 1 1
(Ⅱ)证明:存在A∈S(n,n),使得l(A)=2n-4k,其中k=0,1,2,…,n;
(Ⅲ)给定n为奇数,对于所有的A∈S(n,n),证明:l(A)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
数列{an}满足an=f(n)(n∈N*
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•嘉定区一模)设集合A={n|n∈N,1≤n≤500},在A上定义关于n的函数f(n)=log(n+1)(n+2),则集合M={k|k=f(1)f(2)…f(n),k∈N}用列举法可表示为
{2,3,4,5,6,7,8}
{2,3,4,5,6,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:

将正整数1,2,3,4,…,n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算各行和各列中的任意两个数a,b(a>b)的比值
a
b
,称这些比值中的最小值为这个数表的“特征值”.
(1)当n=2时,试写出排成的各个数表中所有可能的不同“特征值”;
(2)若aij表示某个n行n列数表中第i行第j列的数(1≤i≤n,1≤j≤n),且满足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
请分别写出n=3,4,5时数表的“特征值”,并由此归纳此类数表的“特征值”(不必证明);
(3)对于由正整数1,2,3,4,…,n2排成的n行n列的任意数表,若某行(或列)中,存在两个数属于集合{n2-n+1,n2-n+2,…,n2},记其“特征值”为λ,求证:λ≤
n+1
n

查看答案和解析>>

同步练习册答案