精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
mx
(m∈
R).
(Ⅰ)求函数f(x)的定义域,并讨论函数f(x)的单调性;
(Ⅱ)问是否存在实数m,使得函数f(x)在区间[1,e]上取得最小值3?请说明理由.
分析:(I)求出导函数,令f′(x)=0,得 x=-m,通过讨论根与定义域的关系,判断出导函数的符号,进一步判断出函数的单调性.
(II)通过讨论根x=-m与区间[1,e]的关系,判断出导函数的符号,判断出函数的单调性,进一步求出f(x)在区间[1,e]上取得最小值,令其等于3,求出m的范围.
解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),且 f(x)=
1
x
+
m
x2
=
x+m
x2

令f′(x)=0,得 x=-m.--------------(2分)
当m≥0时,x+m>0,f(x)=
x+m
x2
>0
,函数f(x)在(0,+∞)上是增函数;
当m<0时,在区间(0,-m)上f′(x)<0,函数f(x)在(0,-m)上是减函数;
在区间(-m,+∞)上f′(x)>0,函数f(x)在(-m,+∞)上是增函数.---(6分)
(Ⅱ)由(Ⅰ)知f(x)=
x+m
x2

(1)若m≥-1,则在区间[1,e]上f′(x)≥0,函数f(x)在[1,e]上是增函数,
此时,f(x)取最小值f(1),
由f(1)=-m=3,得m=-3∉[-1,+∞);--------(8分)
(2)若m≤-e,则在区间[1,e]上f′(x)≤0,函数f(x)在[1,e]上是减函数,
此时,f(x)取最小值f(e),
f(e)=1-
m
e
=3
,得m=-2e∈(-∞,-e];-------(10分)
(3)若-e<m<-1,
则在区间[1,-m)上f′(x)≤0,函数f(x)在[1,-m)上是减函数,
在区间(-m,+∞)上f′(x)≥0,函数f(x)在(-m,+∞)上是增函数,
此时,f(x)取最小值f(-m),
由f(-m)=ln(-m)+1=3,得m=e2∉(-e,-1);------(12分)
综上所述,存在实数m=-2e,使得f(x)在区间[1,e]上取得最小值3.----------(13分)
点评:解决函数的单调性、极值、最值常利用的工具是导函数,若函数中含有参数,一般需要讨论,讨论的起点往往从根与区间的关系上引起讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案