精英家教网 > 高中数学 > 题目详情

椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,点P(1,)和AB都在椭圆E上,且m(mR).

(1)求椭圆E的方程及直线AB的斜率;

(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.

答案:
解析:

  解:(1)由解得a2=4,b2=3,

  椭圆方程为;2分

  设A(x1y1)、B(x2y2),由=m

  (x1x2-2,y1y2-3)=m(1,),即

  又,两式相减得

  ;6分

  (2)由(1)知,点A(x1y1)、B(x2y2)的坐标满足

  点P的坐标为(1,),m=-3,于是x1x2+1=3+m=0,y1y2=3+=0,

  因此△PAB的重心坐标为(0,0).即原点是△PAB的重心.

  ∵x1x2=-1,y1y2=-,∴AB中点坐标为(),10分

  又,两式相减得

  

  ∴直线AB的方程为y(x),即x+2y+2=0;13分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过A(-2,0)、B(2,0)、C(1,
3
2
)
三点.
(1)求椭圆E的方程;
(2)过定点F(-
3
,0)
作直线l与椭圆E交于M、N两点,求△OMN的面积S的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点O,两个焦点分别为A(-1,0),B(1,0),一个顶点为H(2,0).
(1)求椭圆E的标准方程;
(2)对于x轴上的点P(t,0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆E的中心在坐标原点O,焦点在x轴上,离心率为
1
2
.点P(1,
3
2
)、A、B在椭圆E上,且
PA
+
PB
=m
OP
(m∈R);
(Ⅰ)求椭圆E的方程及直线AB的斜率;
(Ⅱ)求证:当△PAB的面积取得最大值时,原点O是△PAB的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆E的中心在坐标原点O,焦点在x轴上,离心率为
1
2
.点P(1,
3
2
)、A、B在椭圆E上,且
PA
+
PB
=m
OP
(m∈R).
(1)求椭圆E的方程及直线AB的斜率;
(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过M(2,1)、N(2
2
,0)
两点,P是E上的动点.
(1)求|OP|的最大值;
(2)若平行于OM的直线l在y轴上的截距为b(b<0),直线l交椭圆E于两个不同点A、B,求证:直线MA与直线MB的倾斜角互补.

查看答案和解析>>

同步练习册答案