精英家教网 > 高中数学 > 题目详情
f(x)=
e|x|-sinx+1
e|x|+1
在[-m,m](m>0)上的最大值为p,最小值为q,则p+q=______.
f(x)=1-
sinx
e|x|+1
,令g(x)=f(x)-1=-
sinx
e|x|+1
,x∈[-m,m](m>0),
g(-x)=-
sin(-x)
e|x|+1
=
sinx
e|x|+1
=-g(x),所以g(x)为奇函数.
当x∈[-m,m]时,设g(x)max=g(x0),即[f(x)-1]max=g(x0),所以f(x)max=1+g(x0);
又g(x)是奇函数,所以g(x)min=-g(x0),即[f(x)-1]min=-g(x0),所以f(x)min=1-g(x0),
所以p+q=[1+g(x0)]+[1-g(x0)]=2.
故答案为:2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然界对数的底,a∈R)
(1)求f(x)的解析式;
(2)设g(x)=
ln|x|
|x|
,x∈[-e,0)
,求证:当a=-1时,f(x)>g(x)+
1
2

(3)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
e|x|-sinx+1e|x|+1
在[-m,m](m>0)上的最大值为p,最小值为q,则p+q=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设a∈R,函数f(x)=e-x(x2+ax+1),其中e是自然对数的底数.

(1)讨论函数f(x)在R上的单调性;

(2)当-1<a<0时,求f(x)在[-2,1]上的最小值.

(文)已知f(x)=x3+mx2-2m2x-4(m为常数,且m>0)有极大值.

(1)求m的值;

(2)求曲线y=f(x)的斜率为2的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=xlnx.

(1)求函数f(x)的单调区间和最小值;

(2)当b>0时,求证:bb(其中e=2.718 28…是自然对数的底数);

(3)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.

(1)求和c的值.

(2)求函数f(x)的单调递减区间(用字母a表示).

(3)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),并求S(t)的最大值.

查看答案和解析>>

同步练习册答案