精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对边分别是a,b,c,且3bsinC-5csinBcosA=0
(1)求sinA;
(2)若tan(A-B)=-
2
11
,求tanC.
(1)由正弦定理
b
sinB
=
c
sinC
得:bsinC=csinB.
又3bsinC-5csinBcosA=0,
∴bsinC(3-5cosA)=0,
∵bsinC≠0,∴3-5cosA=0,即cosA=
3
5

又A∈(0,π),
sinA=
1-cos2A
=
4
5
;…(4分)
(2)由(1)知cosA=
3
5
sinA=
4
5

tanA=
4
3

因为tan(A-B)=-
2
11

所以tanB=tan[A-(A-B)]=
tanA-tan(A-B)
1+tanA•tan(A-B)
=
4
3
-(-
2
11
)
1+
4
3
×(-
2
11
)
=2

所以tanC=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=-
4
3
+2
1-
4
3
×2
=2
.…(8分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案