精英家教网 > 高中数学 > 题目详情
已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点.
(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离.
精英家教网
(1)∵SA⊥平面ABCD,BD?平面ABCD,
∴SA⊥BD、
∵ABCD是正方形,
∴AC⊥BD,∴BD⊥平面SAC、
∵BD?平面EBD,
∴平面EBD⊥平面SAC、
(2)设AC∩BD=F,连SF,则SF⊥BD、
∵AB=2.∴BD=2
2

∵SF=
SA2+AF2
=
42+(
2
)2
=3
2

∴S△SBD=
1
2
BD•SF=
1
2
•2
2
•3
2
=6.
设点A到平面SBD的距离为h,
∵SA⊥平面ABCD,
1
3
•S△SBD•h=
1
3
•S△ABD•SA,
∴6•h=
1
2
•2•2•4,
∴h=
4
3

∴点A到平面SBD的距离为
4
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知四棱锥S-ABCD中,四边形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
12
,E是棱SC的中点.
(Ⅰ)求证:DE∥平面SAB;
(Ⅱ)求三棱锥S-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

 (08年安徽信息交流)已知三棱锥S―ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90。,则当球的表面积为400时。点O到平面ABC的距离为       (      )

    A.4                B.5                C.6                D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源:2010年江西省南昌十六中高考数学一模试卷(文科)(解析版) 题型:选择题

已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为( )
A.4
B.5
C.6
D.8

查看答案和解析>>

同步练习册答案