精英家教网 > 高中数学 > 题目详情

设函数数学公式
(1)当a=2时,求函数f(x)的最小值;
(2)当0<a<1时,试判断函数f(x)的单调性,并证明.

解:(1)当a=2时,

当且仅当,即时取等号,

(2)当0<a<1时,任取0≤x1<x2
∵0<a<1,(x1+1)(x2+1)>1,

∵x1<x2,∴f(x1)<f(x2),即f(x)在[0,+∞)上为增函数.
分析:(1)当a=2时,将函数f(x)变形成,然后利用均值不等式即可求出函数f(x)的最小值;
(2)先取值任取0≤x1<x2然后作差f(x1)-f(x2),判定其符号即可判定函数f(x)在[0,+∞)上的单调性.
点评:本题主要考查了函数的最值的求解,以及函数单调性的判断与证明,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分高☆考♂资♀源*12分)

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省原名校高三下学期第二次联考文科数学试卷(解析版) 题型:解答题

设函数

(1)当a=l时,求函数的极值;

(2)当a2时,讨论函数的单调性;

(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求

实数m的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省高三上学期第二次月考数学试卷(解析版) 题型:解答题

(本小题满分12分)

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年海南省高三教学质量监测理科数学卷 题型:解答题

(选修4—5:不等式选讲)设函数

(1)当a=-5时,求函数的定义域。

(2)若函数的定义域为R,求实数a的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(江西卷)解析版(理) 题型:解答题

 

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

 

查看答案和解析>>

同步练习册答案