精英家教网 > 高中数学 > 题目详情
对于a,b∈R,记max{a,b}=
b   a<b
a   a≥b
,若函数f(x)=max{
1
2
x,|x-1|}
,其中x∈R,则f(x)的最小值为
1
3
1
3
分析:根据两个式子比较大小和绝对值的意义,将f(x)化简成分段函数的形式,可得f(x)单调性,由此即可求得函数f(x)的最小值.
解答:解:由
1
2
x
=|x-1|得,3x2-8x+4=0,解得x=
2
3
或2,
当x≤
2
3
或x≥2时,|x-1|≥
1
2
x

2
3
<x<2时,|x-1|<
1
2
x

∴由定义得,f(x)=
1
2
x     
2
3
<x<2
|x-1|     x≤
2
3
或x≥2
=
1
2
x     
2
3
<x<2
1-x    x≤
2
3
x-1     x≥2

∴f(x)在(-∞,
2
3
)上是减函数;在(
2
3
,2),(2,+∞)上是增函数,
则函数f(x)的最小值为f(
2
3
)=1-
2
3
=
1
3

故答案为:
1
3
点评:本题给出特殊定义,求函数f(x)的最小值,着重考查了实数比较大小、绝对值的意义和分段函数的处理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当a=c=0,b=
34
时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)对于正整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<b.特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),试求q,r的值;
(Ⅱ)求证:不存在这样的函数f:A→{1,2,3},使得对任意的整数x1,x2∈A,若|x1-x2|∈{1,2,3},则f(x1)≠f(x2);
(Ⅲ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的个数),且存在a,b∈B,b<a,b|a,则称B为“和谐集”.求最大的m∈A,使含m的集合A的有12个元素的任意子集为“和谐集”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当a=c=0,b=
3
4
时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省杭州二中高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)

查看答案和解析>>

同步练习册答案