精英家教网 > 高中数学 > 题目详情
13.若${∫}_{1}^{a}$(2x+$\frac{1}{x}$)dx=3+ln2且a>1,则实数a的值是(  )
A.2B.3C.5D.6

分析 根据题意找出2x+$\frac{1}{x}$的原函数,然后根据积分运算法则,两边进行计算,求出a值.

解答 解:${∫}_{1}^{a}$(2x+$\frac{1}{x}$)dx=(x2+lnx)|${\;}_{1}^{a}$=a2+lna-(1+ln1)=3+ln2,a>1,
∴a2+lna=4+ln2=22+ln2,解得a=2,
故选:A.

点评 此题主要考查定积分的计算,解题的关键是找到被积函数的原函数,此题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=\sqrt{10}$,$|\overrightarrow a-\overrightarrow b|=\sqrt{6}$,则$\overrightarrow a$•$\overrightarrow b$=(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.复数$\frac{2}{1+i}$的虚部为-1,共轭复数1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.把正整数数列的所有数按照从小到大的原则写成如图所示的数表,第k行有2k-1个数,第k行的第s个数(从左数起)记为A(k,s),则2015这个数可记为A(11,992).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.由函数y=$\frac{1}{x}$-2的图象、直线y=0及直线x=1围成的封闭平面区域的面积是1-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.防疫站对学生进行身体健康调查,按男女比例采用分层抽样的方法,从2400名学生中抽取一个容量为200的样本,已知女生比男生少抽10人,则该校女生人数为(  )
A.1200B.1190C.1140D.95

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知(x+1)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+a4+a6+a8+a102-(a1+a3+a5+a7+a92的值为(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等差数列{an}满足$\frac{{a}_{11}}{{a}_{12}}$<-1,且其前n项的和Sn有最大值,则当数列{Sn}的前n 项的和取得最大值时,正整数n的值是22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}满足an+1=$\frac{1}{1-{a}_{n}}$,a8=2,则a1=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案