如图,在在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2, AD=CD=
,PA=
,∠ABC=120°,G为线段PC上的点.
![]()
(Ⅰ)证明:BD⊥面PAC ;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求
的值.
科目:高中数学 来源:2013年普通高等学校招生全国统一考试浙江卷文数 题型:044
如图,在在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=
,PA=
,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明∶BD⊥面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com