精英家教网 > 高中数学 > 题目详情

棱长为a的正方形ABCD-A1B1C1D1的12条棱都与球相切,则球的体积为________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网一个棱柱的直观图和三视图(主视图和俯视图是边长为a的正方形,左视图是直角边长为a的等腰三角形)如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(Ⅰ)求证:GN⊥AC;
(Ⅱ)求三棱锥F-MCE的体积;
(Ⅲ)当FG=GD时,证明AG∥平面FMC.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,侧面PBC内有BE⊥PC于E,且BE=
6
3
a,试在AB上找一点F,使EF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥S-ABCD的底面是边长为a的正方形,且SA=a,SB=SD=
2
a

(1)求证:SA⊥平面ABCD;
(2)若SC为四棱锥中最长的侧棱,点E为AB的中点.求直线SE与平面SAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为a的正方体ABCD-A1B1C1D1中,O1、O2分别为正方形AB B1A1、BCC1B1的中心,则四棱锥B1-A1O1O2C1的体积为
1
8
a3
1
8
a3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(理) 如图,已知四棱锥P-ABCD的底面ABCD是边长为a的正方形,点O为该正方形的中心,侧棱PA=PC,PB=PD.
(1)求证:四棱锥P-ABCD是正四棱锥;
(2)设点Q是侧棱PD的中点,且PD的长为2a.求异面直线OQ与AB所成角的大小.(用反三角函数表示)

查看答案和解析>>

同步练习册答案