精英家教网 > 高中数学 > 题目详情
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作l的垂线,垂足为点Q,且
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F的直线交轨迹C于A、B两点,交直线l于点M,
(1)已知,求λ12的值;
(2)求的最小值。
解:(Ⅰ)设点P(x,y),则Q(-1,y),
得:(x+1,0)·(2,-y)=(x-1,y)·(-2,y),
化简得C:y2=4x。
(Ⅱ)(1)设直线AB的方程为:x=my+1(m≠0),
设A(x1,y1),B(x2,y2),
又M(-1,-),
联立方程组,消去x得:y2-4my-4=0,
△=(-4m)2+12>0,

,得
整理得

(2)=(2|y1-yM||y2-yM|
=(1+m2)|y1y2-yM(y1+y2)|+yM2|
=(1+m2)|-4+×4m+|
==4(2+m2+)
当且仅当,即m=1时等号成立,
所以的最小值为16。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且
OP
 • 
QF
=
FP
 • 
FQ

(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知
MA
=λ 
AF
MB
λ2
BF
,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,若
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)过点M(-1,0)作直线m交轨迹C于A,B两点.
(Ⅰ)记直线FA,FB的斜率分别为k1,k2,求k1+k2的值;
(Ⅱ)若线段AB上点R满足
|MA|
|MB|
=
|RA|
|RB|
,求证:RF⊥MF.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•嘉定区二模)如图,已知点F(1,0),点M在x轴上,点N在y轴上,且
NM
NF
=0,点R满足
NM
+
NR
=
0

(1)求动点R的轨迹C的方程;
(2)过B(4,0)作直线l交轨迹C于P、Q两点,求
OP
OQ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•嘉定区二模)如图,已知点F(1,0),点M在x轴上,点N在y轴上,且
NM
NF
=0
,点R满足
NM
+
NR
=
0

(1)求动点R的轨迹C的方程;
(2)过点A(-1,0)作斜率为k的直线l交轨迹C于P、Q两点,且∠PFQ为钝角,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年福建卷文)(本小题满分14分)

如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过Pl的垂线,垂足为点Q,且

?

(I)求动点P的轨迹C的方程;

(II)过点F的直线交轨迹CAB两点,交直线l于点M.

(1)已知的值;

(2)求||?||的最小值.

查看答案和解析>>

同步练习册答案