精英家教网 > 高中数学 > 题目详情

若90°<β<α<135°,则α-β的范围是________,α+β的范围是________.

答案:(0°,45°),(180°,270°).
解析:

  解析:∵90°<β<α<135°,

  则有90°<α<135°,①

  90°<β<135°,②

  0°<α-β,③

  -135°<-β<-90°,④

  由①、③、④得0°<α-β<45°,

  由①、②得180°<α+β<270°.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=
12
,AD=1.
(I)求证:CD⊥平面PAC
(II)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置,并证明,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州二模)如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
3

(Ⅰ)证明:A1C⊥平面AB1C1
(Ⅱ)若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1,试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,△ABC中,∠B=90°,AB=
2
,BC=1,D、 E
两点分别在线段AB、AC上,满足
AD
AB
=
AE
AC
=λ,λ∈(0,1)
.现将△ABC沿DE折成直二面角A-DE-B.
(1)求证:当λ=
1
2
时,面ADC⊥面ABE;
(2)当λ∈(0,1)时,直线AD与平面ABE所成角能否等于
π
6
?若能,求出λ的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)山东省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.
(Ⅰ)请估计一下这组数据的平均数M;
(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,AB=1,PA•AC=1,∠ABC=θ(0°<θ≤90°).
(1)若θ=90°,E为PC的中点,求异面直线PA与BE所成角的大小;
(2)试求四棱锥P-ABCD的体积V的最小值.

查看答案和解析>>

同步练习册答案