精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
(x+1)4+(x-1)4
(x+1)4-(x-1)4
(x≠0).
(Ⅰ)若f(x)=x且x∈R,则称x为f(x)的实不动点,求f(x)的实不动点;
(Ⅱ)在数列{an}中,a1=2,an+1=f(an)(n∈N*),求数列{an}的通项公式.
(Ⅰ)∵f(x)=
x4+6x2+1
4x3+4x
,且f(x)=x,
x4+6x2+1
4x3+4x
=x?3x4-2x2-1=0?x2=1
x2=-
1
3
(舍去),
所以x=1或-1,即f(x)的实不动点为x=1或x=-1.
(Ⅱ)由条件得an+1=
(an+1)4+(an-1)4
(an+1)4-(an-1)4
?
an+1+1
an+1-1
=
(an+1)4
(an-1)4
=(
an+1
an-1
)4

从而有ln
an+1+1
an+1-1
=4ln
an+1
an-1

ln
a1+1
a1-1
=ln3≠0

∴数列{ln
an+1
an-1
}
是首项为ln3,公比为4的等比数列,
ln
an+1
an-1
=4n-1ln3?
an+1
an-1
=34n-1?an=
34n-1+1
34n-1-1
(n∈N*).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案