精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=Asin(x+φ)(A>0,0<φ<π,x∈R)的最大值是1,其图象经过点$M({\frac{π}{3}\;,\;\;\frac{1}{2}})$.
(1)求f(x)的解析式;
(2)已知$α\;,\;\;β∈({0\;,\;\;\frac{π}{2}})$,且$f(α)=\frac{3}{5}$,$f(β)=\frac{12}{13}$.求f(α+β)的值.

分析 (1)由题意求出A,将点M的坐标代入化简后,由φ的范围和特殊角的三角函数值求出φ的值,由诱导公式化简后得函数f(x)的解析式;
(2)由(1)和题意求出cosα和cosβ,由α、β的范围和平方关系求出sinα、sinβ,利用两角和的余弦公式求出cos(α+β),可得f(α+β)的值.

解答 解:(1)由题意得,A=1,
∵函数f(x)的图象经过点$M({\frac{π}{3}\;,\;\;\frac{1}{2}})$,
∴$sin(\frac{π}{3}+φ)=\frac{1}{2}$,
由0<φ<π得,$\frac{π}{3}<\frac{π}{3}+φ<\frac{4π}{3}$,
∴$\frac{π}{3}+φ=\frac{5π}{6}$,解得φ=$\frac{π}{2}$,
∴f(x)=sin(x+$\frac{π}{2}$)=cosx;
(2)由题意知,$f(α)=\frac{3}{5}$,$f(β)=\frac{12}{13}$,
由(1)得,cosα=$\frac{3}{5}$,cosβ=$\frac{12}{13}$,
∵$α,β∈(0,\frac{π}{2})$,
∴$sinα=\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,同理可得sinβ=$\frac{5}{13}$,
∴cos(α+β)=cosαcosβ-sinαsinβ
=$\frac{3}{5}×\frac{12}{13}-\frac{4}{5}×\frac{5}{13}$=$\frac{16}{65}$,
即f(α+β)的值是$\frac{16}{65}$.

点评 本题考查了形如f(x)=Asin(ωx+φ)的解析式的确定,两角和的余弦公式、平方关系和诱导公式的应用,注意角的范围,考查化简、计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若函数f(x)对任意实数x,y均有f(x)•f(y)=f(x+y),且对于任意的x都有f(x)>0,且当x<0时f(x)>1.
(1)求证:f(x)为R上的减函数;
(2)当f(4)=$\frac{1}{16}$时,若f(x2-3x+2)≤$\frac{1}{4}$,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x∈N|x2+2x-3≤0},B={C|C⊆A},则集合B中元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,则(  )
A.$y=3sin({2x-\frac{π}{6}})$B.$y=3sin({2x-\frac{π}{3}})$C.$y=3sin({x-\frac{π}{6}})$D.$y=3sin({x-\frac{π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(4,-2)$,$\overrightarrow b=(x,1)$,若$\overrightarrow a∥\overrightarrow b$,则$|\overrightarrow a+\overrightarrow b|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x∈N|ex<9},其中e为自然对数的底数,e≈2.718281828,集合B={x|x(x-2)<0},则A∩(∁RB)的真子集个数为(  )
A.3B.4C.7D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线C的顶点在坐标原点,焦点在坐标轴上,且C过点(-2,3),则C的方程是y2=-$\frac{9}{2}$x或x2=$\frac{4}{3}$y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow a=(\sqrt{3}sin2x,cos2x)$,$\overrightarrow b=(cos2x,-cos2x)$
(Ⅰ)若$x∈(\frac{7π}{24},\frac{5π}{12}),\overrightarrow a•\overrightarrow b+\frac{1}{2}=-\frac{3}{5}$,求cos4x;
(Ⅱ)若$x∈({0,\frac{π}{3}}]$且关于x的方程$\overrightarrow a•\overrightarrow b+\frac{1}{2}=m$有且仅有一个实数根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=x+yi,满足|z-3-4i|=1,则x2+y2的取值范围是(  )
A.[4,6]B.[5,6]C.[25,36]D.[16,36]

查看答案和解析>>

同步练习册答案