如图,平面PAD⊥平面ABCD,ABCD为正力形,∠PAD=900,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点。
(1)求证:PB∥平面EFG;
(2)求异面直线EG与BD所成的角;
见解析
解法一:(1)证明:取AB中点H,连结GH,HE,
∵E,F,G分别是线段PA、PD、CD的中点,
∴GH//AD//EF,
∴E,F,G,H四点共面。又H为AB中点,
∴EH//PB。又
面EFG,
平面EFG,
∴PB//面EFG。
6分
(2)解:取BC的中点M,连结GM、AM、EM,则GM//BD,
∴∠EGM(或其补角)就是异面直线EG与BD所成的角。在Rt△MAE中,
,
同理
,又
,
∴在△MGE中,![]()
故异面直线EG与BD所成的角为
。
12分
解法二:建立如图所示的空间直角坐标系A-xyz,
则
,
,
,
,
,
,
,
。(1)证明:∵
,
,
,设
,即![]()
解得
。∴
,又∵
与
不共线,∴
、
与
共面。∵
平面EFG,∴PB//平面EFG。
6分
(2)解:∵
,
,∴
。
故异面直线EG与BD所成的角为
。
12分
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
![]()
图22
(1)求证:EN∥平面PCD;
(2)求证:平面PBC⊥平面ADMN;
(3)求平面PAB与平面ABCD所成二面角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com