精英家教网 > 高中数学 > 题目详情
已知a∈R,sinα+3cosα=
10
,则tanα
 
分析:已知等式两边平方,利用完全平方公式展开,再利用同角三角函数间的基本关系变形,即可求出tanα的值.
解答:解:已知等式平方得:(sinα+3cosα)2=10,
即sin2α+6sinαcosα+9cos2α=1+6sinαcosα+8cos2α=10,
∴6sinαcosα+8cos2α=99,即
6sinαcosα+8cos2α
sin2α+cos2α
=
6tanα+8
tan2α+1
=9,
整理得:9tan2α-6tanα+1=0,即(3tanα-1)2=0,
解得:tanα=
1
3

故答案为:
1
3
点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(1,sinθ),
b
=(1,cosθ)
,θ∈R.
(1)若
a
-
b
=(0,
1
5
)
,求sin2θ的值;
(2)若
a
+
b
=(2,0)
,求
sinθ+2cosθ
2sinθ-cosθ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2cosx,sinφ),
b
=(sin(x+φ),-1)(-π<φ<0)
.定义f(x)=
a
b
 (x∈R)
,且f(x)=f(
π
4
-x)
对任意实数x恒成立.
(1)求φ的值;
(2)求函数y=f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,sinθ),
b
=(1,cosθ)
,θ∈R;
(1)若
a
+
b
=(2,0)
,求sin2θ+2sinθcosθ的值;
(2)若
a
-
b
=(0,
1
5
)
,θ∈(π,2π),求sinθ+cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π

(I)求|
a
|
的值;
(II)求证:
a
+
b
a
-
b
互相垂直;
(III)设|k
a
+
b
|=|
a
-k
b
|,k∈R
且k≠0,求β-α的值.

查看答案和解析>>

同步练习册答案