精英家教网 > 高中数学 > 题目详情

已知f(x)=lnx,g(x)=数学公式ax2+bx,
(1)当a=b=数学公式时,求函数h(x)=f(x)-g(x)的单调区间;
(2)若b=2且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围.

解:(1)当 时,

∵h(x)的定义域为(0,+∞),令h'(x)=0,得x=1
∴当0<x<1时,h'(x)>0,h(x)在(0,1)上是单调递增;
当x>1时,h'(x)<0,h(x)在(1,+∞)上是单调递减;
所以,函数h(x)=f(x)-g(x)的单调递增区间为(0,1);单调递减区间为(1,+∞).
(2)b=2时,

因为函数h(x)存在单调递减区间,
所以h′(x)<0有解.
即当x>0时,则ax2+2x-1>0在(0,+∞)上有解.
①当a=0时,y=2x-1为单调递增的一次函数,y=2x-1>0在(0,+∞)总有解.
②当a>0时,y=ax2+2x-1为开口向上的抛物线,y=ax2+2x-1>0在(0,+∞)总有解.
③当a<0时,y=ax2+2x-1为开口向下的抛物线,而y=ax2+2x-1>0在(0,+∞)总有解,
则△=4+4a>0,且方程y=ax2+2x-1=0至少有一个正根,
此时,-1<a<0
综上所述,a的取值范围为(-1,+∞)
分析:(1)将a、b的值代入,可得 ,求出其导数,再在区间(0,∞)上讨论导数的正负,可以得出函数h(x)单调区间;
(2)先求函数h(x)的解析式,因为函数h(x)存在单调递减区间,所以不等式h'(x)<0有解,通过讨论a的正负,得出h′(x)<0有解,即可得出a的取值范围.
点评:本题考查了利用导数研究函数的单调性、导数的几何意义,函数与方程的讨论等,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(0,+∞)上的三个函数f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1处取得极值.
(1)求a的值及h(x)的单调区间;
(2)求证:当1<x<e2时,恒有x<
2+f(x)
2-f(x)

(3)把h(x)对应的曲线C1向上平移6个单位后得到曲线C2,求C2与g(x)对应曲线C3的交点的个数,并说明道理.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=x+
a
x
(a∈R).
(1)求f(x)-g(x)的单调区间;
(2)若x≥1时,f(x)≤g(x)恒成立,求实数a的取值范围;
(3)当n∈N*,n≥2时,证明:
ln2
3
ln3
4
•…•
lnn
n+1
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx-
a
x

(Ⅰ)当a>0时,判断f(x)在定义域上的单调性;
(Ⅱ)若f(x)<x2在(1,+∞)上恒成立,试求a的取值范围;
(Ⅲ)若f(x)在[1,e]上的最小值为
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=x2-x,
(1)求函数h(x)=f(x)-g(x)的单调增区间;
(2)当x∈[-2,0]时,g(x)≤2c2-c-x3恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx+cosx,则f(x)在x=
π2
处的导数值为
 

查看答案和解析>>

同步练习册答案