精英家教网 > 高中数学 > 题目详情
已知f(x)是二次函数且f(0)=0,f(x+1)=f(x)+x+1,求f(x).
分析:设出二次函数的解析式由f(0)=0可求c=0,再由f(x+1)=f(x)+x+1构造方程组可求a、b的值,可得答案.
解答:解:设二次函数f(x)=ax2+bx+c
∵f(0)=a×0+b×0+c=0,∴c=0
∴f(x)=ax2+bx,
又∵f(x+1)=f(x)+x+1,
∴a(x+1)2+b(x+1)=ax2+bx+x+1
∴ax2+2ax+a+bx+b=ax2+bx+x+1
∴2ax+(a+b)=x+1
2a=1
a+b=1
,解得a=
1
2
,b=
1
2

∴f(x)=
1
2
x2+
1
2
x

故答案为f(x)=
1
2
x2+
1
2
x
点评:本题为二次函数解析式的求解,待定系数法是解决问题的方法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是
(0<m<
2
2
内的任一实数)
(0<m<
2
2
内的任一实数)
.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,且函数y=f(x+3)为偶函数,则在函数值f(-1)、f(2)、f(5)、f(7)中,最大的一个不可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是________.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源:2009年浙江省温州市摇篮杯高一数学竞赛试卷(解析版) 题型:填空题

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是    .(写出一个即可)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆外国语学校高一(上)期末数学试卷(解析版) 题型:选择题

已知二次函数f(x)=ax2+bx+c,且函数y=f(x+3)为偶函数,则在函数值f(-1)、f(2)、f(5)、f(7)中,最大的一个不可能是( )
A.f(-1)
B.f(2)
C.f(5)
D.f(7)

查看答案和解析>>

同步练习册答案