已知0<α<β<
=0的两个根,求cos(2α-β)的值.
科目:高中数学 来源:山东省蓬莱、牟平2006—2007学年度第一学期高三年级期中考试、数学试题(文科) 题型:044
| |||||||||||||||
查看答案和解析>>
科目:高中数学 来源: 题型:
已知命题:“若k1a+k2b=0,则k1=k2=0”是真命题,则下面对a、b的判断正确的是( )
A.a与b一定共线 B.a与b一定不共线
C.a与b一定垂直 D.a与b中至少有一个为0
查看答案和解析>>
科目:高中数学 来源:云南省昆明三中11-12学年高二上学期期末考试文科数学试题 题型:解答题
已知F1、F2是椭圆+=1(a>b>0)的左、右焦点,A是椭圆上位于第一象限的一点,B也在椭圆上,且满足
+
=0(O为坐标原点),
·
=0,且椭圆的离心率为.
(1)求直线AB的方程;
(2)若△ABF2的面积为4,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源:2013届山西省晋商四校高二下学期联考理科数学试卷(解析版) 题型:解答题
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com