精英家教网 > 高中数学 > 题目详情
2
0
|
1-(x-1)2
-x|dx
=
1
1
分析:由积分的形式分析,求解它的值得分为两部分来求,先画出以(1,0)为圆心,以1为半径的圆.所示积分相当于图中阴影部分的面积.
解答:解:先画出以(1,0)为圆心,以1为半径的圆.
由题意
2
0
|
1-(x-1)2
-x|dx
表示图中阴影部分的面积.故其值为 S△OAB-S半圆+2S弓形=
1
2
×2×2
-
1
2
×π
+2(
1
4
π-
1
2
×1×1
)=1.
故答案为:1.
点评:本题考查求定积分,求解本题关键是根据定积分的运算性质将其值分为两部分来求,其中一部分要借用其几何意义求值,在求定积分时要注意灵活选用方法,求定积分的方法主要有两种,一种是几何法,借助相关的几何图形,一种是定义法,求出其原函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若方程
|x2-1|x-1
=kx
有两个实数根,则实数k的取值范围是
0<k<1或1<k<2
0<k<1或1<k<2

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年东亚运动会于2013年10月6日至10月15日在中国天津举行.天津某体育用品专卖店抓住商机购进某种东亚运动会特许商品进行销售,该特许产品的成本为20元/个,每日的销售量y(单位:个)与单价x(单位:元)之间满足关系式y=
ax-20
+4(x-50)2
(其中20<x<50,a为常数).当销售价格为40元/个时,每日可售出该商品401个
(1)求a的值及每日销售该特许产品所获取的总利润L(x);
(2)试确定单价x的值,使所获得的总利润L(x)最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵A=
2a
b0
属于特征值-1的一个特征向量为
1
-3
,求矩阵A的逆矩阵.

C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.

查看答案和解析>>

科目:高中数学 来源:福建省厦门一中2011-2012学年高一上学期期中数学试题 题型:044

20世纪90年代,气候变化专业委员会向政府提供的一项报告指出:全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO2体积分数增加.据测,1990年、1991年、1992年大气中的CO2体积分数分别比1989年增加了1个可比单位、3个可比单位、6个可比单位.若用一个函数模拟20世纪90年代中每年CO2体积分数增加的可比单位数y与年份增加数x(即当年数与1989的差)的关系,模拟函数可选用二次函数f(x)=px2-1x+r(其中p,q,r为常数)或函数g(x)=abx+c(其中a,b,c为常数,且b>0,b≠1),(1)根据题中的数据,求f(x)和g(x)的解析式;(2)如果1994年大气中的CO2体积分数比1989年增加了16个可比单位,请问用以上哪个函数作为模拟函数较好?并说明理由.

查看答案和解析>>

同步练习册答案