精英家教网 > 高中数学 > 题目详情
求函数y=
39
-(
1
3
)
x
+
log0.1
3x-2
2x+1
的定义域.
由题意可得,
39
-(
1
3
)x≥0
log0.1
3x-2
2x+1
≥0

所以,
39
(
1
3
)
x
3x-2
2x+1
>0
3x-2
2x+1
≤1

解可得,
x≥-
2
3
x>
2
3
或x<-
1
2
-
1
2
<x≤3

即函数的定义域为{x|
2
3
<x≤3}
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系Q=
39(2x2-29x+107)(5<x<7)
198-6x
x-5
(7≤x<8)

(1)求总利润(利润=销售额-成本)y(元)与实际销售价x(件)的函数关系式;
(2)试问:当实际销售价为多少元时,总利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意实数x、y都有f(xy)=f(x)•f(y),且f(-1)=1,f(27)=9,当0≤x<1时,0≤f(x)<1.
(1)判断f(x)的奇偶性;
(2)判断f(x)在[0,+∞)上的单调性,并给出证明;
(3)若a≥0且f(a+1)≤
39
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
39
-(
1
3
)
x
+
log0.1
3x-2
2x+1
的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x3+ax2-4(a∈R).若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为数学公式
(1)求a;
(2)设f(x)的导函数是f'(x),若m,n∈[-1,1],求f(m)+f'(n)的最小值;
(3)对实数m的值,讨论关于x的方程f(x)=m的解的个数.

查看答案和解析>>

同步练习册答案