精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos(2x+
π
3
)+sin2x
,则 f(x)是(  )
分析:利用二倍角公式,化简函数的表达式为一个角的一个三角函数的形式,即可求解函数的周期,判断函数的奇偶性.
解答:解:函数f(x)=cos(2x+
π
3
)+sin2x
=cos2xcos
π
3
-sin2xsin
π
3
+
1-cos2x
2

=-
3
2
sin2x
+
1
2

所以函数的周期是T=
2
=π.
因为f(-x)═-
3
2
sin(-2x)
+
1
2
=
3
2
sin2x
+
1
2
≠±f(x),所以函数是非奇非偶函数.
故选D.
点评:本题考查二倍角公式的应用,函数的周期与奇偶性的判断,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案