(1)若抛掷一次,求能看到的三个面上数字之和大于6的概率;
(2)若抛掷两次,求两次朝下面上的数字之积大于7的概率;
(3)若抛掷两次,以第一次朝下面上的数字为横坐标a,第二次朝下面上的数字为纵坐标b,求点(a,b)落在直线x-y=1下方的概率.
解:(1)记事件“抛掷后能看到的数字之和大于6”为A,抛掷这颗正四面体骰子,抛掷后能看到的数字构成的集合有{2,3,4},{1,3,4},{1,2,4},{1,2,3},共有4种情形,其中,能看到的三面数字之和大于6的有3种,则P(A)=
.
(2)记事件“抛掷两次,两次朝下面上的数字之积大于7”为B,两次朝下面上的数字构成的数对共有16种情况,其中能够使得数字之积大于7的为(2,4),(4,2),(3,3),(3,4),(4,3),(4,4)共6种,则P(B)=
.
(3)记事件“抛掷后点(a,b)在直线x-y=1的下方”为C,要使点(a,b)在直线`x-y=1的下方,则需b<a-1,当b=1时,a=3或4;当b=2时,a=4,
则所求的概率P(C)=
.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com