精英家教网 > 高中数学 > 题目详情

已知数学公式≤(数学公式x-2,求函数y=2x-2-x的值域.

解:∵
∴x2+x≤4-2x,即x2+3x-4≤0,得-4≤x≤1.
又∵y=2x-2-x是[-4,1]上的增函数,
∴2-4-24≤y≤2-2-1
故所求函数y的值域是[-].
分析:由题意,不等式两侧都化为底数是2的指数式,利用指数函数的单调性解出x的范围,再求函数的值域即可.
点评:本题考查解不等式和求函数的值域问题,属基本题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:(x+2)(x-10)≤0,q:[x-(1-m)][x-(1+m)]≤0(m>0),若-p是-q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求(
1
x
-
x
2
)9
的展开式中的常数项;
(2)已知x10=a0+a1(x+2)+a2(x+2)2+…a10(x+2)10,求a1+a2+a3+…a10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x=-2+cost
y=1+sint
 (t为参数),C2
x=4cosθ
y=3sinθ
(q为参数).
(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)过曲线C2的左顶点且倾斜角为
π
4
的直线l交曲绒C1于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数的解析式:
(1)已知f(数学公式)=x+2数学公式,求f(x+1);
(2)设f(x)满足f(x)-2f(数学公式)=x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx+cosx=,且x∈(,2π).

(1)求sinx、cosx、tanx的值;

(2)求sin3x-cos3x的值.

查看答案和解析>>

同步练习册答案