精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设bn+2=3log
1
4
an
(n∈N*),数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(1)由题意知,an=(
1
4
)n(n∈N*)

bn=3log
1
4
an-2,b1=3log
1
4
a1-2=1

bn+1-bn=3log
1
4
an+1-3log
1
4
an=3log
1
4
an+1
an
=3log
1
4
q=3

∴数列{bn}是首项b1=1,公差d=3的等差数列(7分)
(2)由(1)知,an=(
1
4
)nbn=3n-2(n∈N*)

cn=(3n-2)×(
1
4
)n,(n∈N*)

Sn=1×
1
4
+4×(
1
4
)2+7×(
1
4
)3++(3n-5)×(
1
4
)n-1+(3n-2)×(
1
4
)n

于是
1
4
Sn=1×(
1
4
)2+4×(
1
4
)3+7×(
1
4
)4++(3n-5)×(
1
4
)n+(3n-2)×(
1
4
)n+1

两式相减得
3
4
Sn=
1
4
+3[(
1
4
)2+(
1
4
)3++(
1
4
)n]-(3n-2)×(
1
4
)n+1
=
1
2
-(3n+2)×(
1
4
)n+1

Sn=
2
3
-
12n+8
3
×(
1
4
)n+1(n∈N*)
(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求证:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1的等差数列,且公差不为零,而等比数列{bn}的前三项分别是a1,a2,a6
(I)求数列{an}的通项公式an
(II)若b1+b2+…bk=85,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为2的等差数列,又数列{bn}的前n项和Sn=nan
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若cn=
1bn(2an+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案