精英家教网 > 高中数学 > 题目详情

函数数学公式的单调递增区间是________.

[2,5)
分析:先根据对数函数的真数大于零求定义域,再把复合函数分成二次函数和对数函数,分别在定义域内判断两个基本初等函数的单调性,再由“同增异减”求原函数的递增区间.
解答:要使函数有意义,则-x2+4x+5>0,解得-1<x<5,故函数的定义域是(-1,5),
令t=-x2+4x+5=-(x-2)2+9,则函数t在(-1,2)上递增,在[2,5)上递减,
又因函数y=在定义域上单调递减,
故由复合函数的单调性知函数的单调递增区间是[2,5)
故答案为:[2,5).
点评:本题的考点是复合函数的单调性,对于对数函数需要先求出定义域,这也是容易出错的地方;再把原函数分成几个基本初等函数分别判断单调性,再利用“同增异减”求原函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(
1
2
3
2
)
,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(
3
2
1
2
),则当0≤t≤12时,动点A的纵坐标y关于 t(单位:秒)的函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=-x2+2lnx+8,则函数的单调递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2|sinx|,则该函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图所示,则该函数的单调递增区间是(  )
精英家教网

查看答案和解析>>

同步练习册答案