精英家教网 > 高中数学 > 题目详情

以原点为中心,焦点在y轴上的双曲线C的一个焦点为,一个顶点为,则双曲线C的方程为(    )

A.   B.   C.   D.

 

【答案】

C

【解析】

试题分析:∵双曲线C的一个焦点为,一个顶点为,∴

,∴双曲线C的方程为.

考点:1.双曲线的标准方程;2.双曲线的焦点、顶点.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面内与两定点A(2,0),B(-2,0)连线的斜率之积等于-
1
4
的点P的轨迹为曲线C1,椭圆C2以坐标原点为中心,焦点在y轴上,离心率为
5
5

(Ⅰ)求C1的方程;
(Ⅱ)若曲线C1与C2交于M、N、P、Q四点,当四边形MNPQ面积最大时,求椭圆C2的方程及此四边形的最大面积.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河北唐山市高三年级第一学期期末考试理科数学试卷(解析版) 题型:选择题

是以原点为中心,焦点在轴上的等轴双曲线在第一象限部分,曲线在点P处的切线分别交该双曲线的两条渐近线于两点,则(    )

A.          B.

C.    D.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面内与两定点A(2,0),B(-2,0)连线的斜率之积等于-
1
4
的点P的轨迹为曲线C1,椭圆C2以坐标原点为中心,焦点在y轴上,离心率为
5
5

(Ⅰ)求C1的方程;
(Ⅱ)若曲线C1与C2交于M、N、P、Q四点,当四边形MNPQ面积最大时,求椭圆C2的方程及此四边形的最大面积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省昆明市高三(上)摸底调研数学试卷(理科)(解析版) 题型:解答题

已知平面内与两定点A(2,0),B(-2,0)连线的斜率之积等于的点P的轨迹为曲线C1,椭圆C2以坐标原点为中心,焦点在y轴上,离心率为
(Ⅰ)求C1的方程;
(Ⅱ)若曲线C1与C2交于M、N、P、Q四点,当四边形MNPQ面积最大时,求椭圆C2的方程及此四边形的最大面积.

查看答案和解析>>

同步练习册答案