精英家教网 > 高中数学 > 题目详情
已知数集A={a2,a+1,-3}与数集B={a-3,2a-1,a2+1},若A∩B={-3},求A∪B.

解:A∩B={-3},

∴-3∈B.

∵a2+1>0,

∴集合B中等于-3的元素只有a-3或2a-1两种情形.

(1)当a-3=-3,即a=0时,A={0,1,-3},B={-3,-1,1}.这时A∩B={-3,1},与已知A∩B={-3}矛盾,故舍去a=0;

(2)当2a-1=-3,即a=-1时,A={1,0,-3},B={-4,-3,2},符合要求.

因此A∪B={-4,-3,0,1,2}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),aiaj
ajai
两数中至少有一个属于A.
(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(2)求a1的值;当n=3时,数列a1,a2,a3是否成等比数列,试说明理由;
(3)由(2)及通过对A的探究,试写出关于数列a1,a2,…,an的一个真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数集A={a1,a2,a3,…,an},记和ai+aj(1≤i<j≤n)中所有不同值的个数为M(A).如当A={1,2,3,4}时,由1+2=3,1+3=4,1+4=2+3=5,2+4=6,3+4=7,得M(A)=5.若A=1,2,3,…,n,则M(A)=
2n-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an},其中0≤a1<a2<…<an,且n≥3,若对?i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个属于A,则称数集A具有性质P.
(Ⅰ)分别判断数集{0,1,3}与数集{0,2,4,6}是否具有性质P,说明理由;
(Ⅱ)已知数集A={a1,a2…a8}具有性质P,判断数列a1,a2…a8是否为等差数列,若是等差数列,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an}(1=a1<a2<…<an,n≥2)具有性质P:对任意的k(2≤k≤n),?i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(Ⅱ)求证:an≤2a1+a2+…+an-1(n≥2);
(Ⅲ)若an=72,求数集A中所有元素的和的最小值.

查看答案和解析>>

同步练习册答案