精英家教网 > 高中数学 > 题目详情
1.设数列{an}满足a1=3,an+1-an=8×32n-1
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn

分析 (1)利用“累加求和”方法即可得出.
(2)利用“错位相减法”、等比数列的前n项和公式即可得出.

解答 解:(1)∵数列{an}满足a1=3,an+1-an=8×32n-1
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=8×(32n-3+32n-5+…+31)+3
=8×$\frac{3({9}^{n-1}-1)}{9-1}$+3=32n-1
∴an=32n-1
(2)bn=nan=n×32n-1
∴数列{bn}的前n项和Sn=3+2×33+3×35+…+n×32n-1
∴9Sn=33+2×35+…+(n-1)×32n-1+n×32n+1
∴两式相减得-8Sn=3+33+35+…+32n-1-n×32n+1=$\frac{3({9}^{n}-1)}{9-1}$-n×32n+1=$\frac{(1-8n)×{3}^{2n+1}-3}{8}$,
∴Sn=$\frac{(8n-1)×{3}^{2n+1}+3}{64}$.

点评 本题考查了“累加求和”方法、“错位相减法”、等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设命题p:?x>0,x>lnx.则¬p为(  )
A.?x>0,x≤lnxB.?x>0,x<lnxC.?x0>0,x0>lnx0D.?x0>0,x0≤lnx0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(x,y),$\overrightarrow{b}$=(-1,2),且$\overrightarrow{a}$+$\overrightarrow{b}$=(1,3),则|$\overrightarrow{a}$-2$\overrightarrow{b}$|等于(  )
A.1B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设m∈R,函数f(x)=(x-m)2+(e2x-2m)2,若存在x0使得f(x0)≤$\frac{1}{5}$成立,则m=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2$\sqrt{5}$,抛物线y=$\frac{1}{4}$x2+$\frac{1}{4}$与双曲线C的渐近线相切,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1C.x2-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a,b,c为三条不同的直线,α,β是两个不同的平面,则下列判断正确的是(  )
A.若a⊥b,b⊥c,则a⊥cB.若a∥α,b∥α,则a∥bC.若a∥α,b⊥α,则b∥αD.若a⊥α,α∥β,则a⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“?x>0,lnx-x≥0”的否定是?x>0,lnx-x<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若△ABC的面积为64,边AB与AC的等比中项为12,则sinA=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{3}$=1(a>0)过点(-2,0),则双曲线的离心率为(  )
A.$\frac{1}{2}$B.2C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

同步练习册答案