设
科目:高中数学 来源: 题型:
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
查看答案和解析>>
科目:高中数学 来源:2014届广东省高一下期中理科数学试卷(解析版) 题型:解答题
(本小题满分14分)
已知集合
是满足下列性质的函数
的全体, 存在非零常数
, 对任意
, 有
成立.
(1) 函数
是否属于集合
?说明理由;
(2) 设
, 且
, 已知当
时,
,
求当
时,
的解析式.
(3)若函数
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市十三校高三上学期第一次联考试题文科数学 题型:解答题
(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
设等比数列
的前
项和为
,已知
.
(1)求数列
的通项公式;(2)在
与
之间插入
个1,构成如下的新数列:
,求这个数列的前
项的和;、(3)在
与
之间插入
个数,使这
个数组成公差为
的等差数列(如:在
与
之间插入1个数构成第一个等差数列,其公差为
;在
与
之间插入2个数构成第二个等差数列,其公差为
,…以此类推),设第
个等差数列的和是
. 是否存在一个关于
的多项式
,使得
对任意
恒成立?若存在,求出这个多项式;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com