精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1).等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5
(1)求数列{an}的通项公式;
(2)设数列{
1
anan+1
}的前n项和为Mn,求证:
1
5
≤Mn
1
4
分析:(1)根据T5=T3+2b5 ,求得 b4=b5,得到公比 a1=
b5
b4
=1,再由当n≥2时,an=sn-sn-1 可得数列{an}是以1为首项,以4为公差的等差数列,由此求得数列{an}的通项公式.
(2)用裂项法求得 Mn =
1
4
(1-
1
4n+1
)<
1
4
,再由数列{ Mn }是增数列,可得 Mn≤M1=
1
5
,从而命题得证.
解答:解:(1)∵等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5 ,∴b4+b5=2b5
∴b4=b5,∴公比 a1=
b5
b4
=1,故等比数列{bn}是常数数列.
数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),当n≥2时,
an=sn-sn-1=nan-2n(n-1)-[nan-1-2(n-1)(n-2)],∴an-an-1=4 (n≥2).
∴数列{an}是以1为首项,以4为公差的等差数列,an=4n-3.
(2)∵数列{
1
anan+1
}的前n项和为Mn
1
anan+1
=
1
(4n-3)[4(n+1)-3]
=
1
(4n-3)(4n+1)
=
1
4
(
1
4n-3
-
1
4n+1
)

∴Mn =
1
4
[1-
1
5
+
1
5
-
1
9
+
1
9
-
1
13
+…+
1
4n-3
-
1
4n+1
]=
1
4
(1-
1
4n+1
)<
1
4

再由数列{ Mn }是增数列,∴Mn≥M1=
1
5

综上可得,
1
5
≤Mn
1
4
点评:本题主要考查数列的递推公式的应用,用放缩法证明不等式,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案