精英家教网 > 高中数学 > 题目详情

若函数f(x)x=a处的导数值为A(aA0),函数满足,则A=________

答案:1/2a
解析:

答案:

解析:,即,又 ,且 ,∵,∴


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列4个命题:
①若f(x)在R上为减函数,则-f(x)在R上为增函数;
②若f(x)=
x2-2x-3
,那么它的单调递增区间为[1,+∞);
③若函数f(x)=
ax(x>1)
(4-2a)x+2(x≤1)
在R上是增函数,则a的取值范围是1<a<8;
④函数f(x),g(x)在区间[-a,a](a>0)上都是奇函数,则f(x)•g(x)在区间[-a,a](a>0)是偶函数;
其中正确命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为R,且存在常数m>0,对任意x∈R,有|f(x)|≤m|x|,则称f(x)为F函数.给出下列函数:
①f(x)=x2,②f(x)=sinx+cosx,③f(x)=
x
x2+x+1
,④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2012|x1-x2|,⑤f(x)=x
1
2
,其中是F函数的有
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定理:若函数f(x)的图象在区间[a,b]上连续,且在(a,b)内可导,则至少存在一点ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a)成立.应用上述定理证明:
(1)1-
x
y
<lny-lnx<
y
x
-1(0<x<y)
;     
(2)设bn=
1
n
,Tn为数列{bn}的前n项和,求证:T2011-1<ln2011<T2010
(3)设f(x)=xn(n∈N*).若对任意的实数x,y,f(x)-f(y)=f′(
x+y
2
)(x-y)
恒成立,求n所有可能的值.

查看答案和解析>>

同步练习册答案