精英家教网 > 高中数学 > 题目详情
已知双曲线x2-
y2
3
=1
的焦点F1、F2,点M在双曲线上且MF1⊥x轴,则F1到直线F2M的距离为(  )
A、
6
34
17
B、
4
51
17
C、
12
5
D、
5
12
分析:由题意可得点M的横坐标为-c=-2,代入双曲线方程可得 y=±3,故MF1=3,又 F1F2=2c=4,利用面积法求直角三角形斜边上的高.
解答:解:由题意可得点M的横坐标为-c=-2,代入双曲线方程可得 y=±3,
∴MF1=3,F1F2=2c=4,
直角三角形MF1F2中,F1到直线F2M的距离为h=
MF1F1F2
MF2
=
3×4
9+16
=
12
5

故选 C.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,利用面积法求直角三角形斜边上的高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知双曲线x2-y2+1=0与抛物线y2=(k-1)x至多有两个公共点,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-y2=2的左、右焦点分别为F1,F2,过点F2的动直线与双曲线相交于A,B两点.若动点M满足
F1M
=
F1A
+
F1B
+
F1O
(其中O为坐标原点),求点M的轨迹方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,双曲线在第一象限的图象上有一点P,∠PAB=α,∠PBA=β,∠APB=γ,则(  )
A、tanα+tanβ+tanγ=0B、tanα+tanβ-tanγ=0C、tanα+tanβ+2tanγ=0D、tanα+tanβ-2tanγ=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-y2=λ与椭圆
x2
16
+
y2
64
=1
有共同的焦点,则λ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州一模)已知双曲线x2-y2=4a(a∈R,a≠0)的右焦点是椭圆
x2
16
+
y2
9
=1
的一个顶点,则a=
2
2

查看答案和解析>>

同步练习册答案