精英家教网 > 高中数学 > 题目详情
已知以原点为对称中心、F(2,0)为右焦点的椭圆C过P(2,
2
),直线l:y=kx+m(k≠0)交椭圆C于不同的两点A,B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在实数k,使线段AB的垂直平分线经过点Q(0,3)?若存在求出 k的取值范围;若不存在,请说明理由.
(Ⅰ)设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
∵c=2,且椭圆过点P(2,
2
),所以
a2-b2=4
4
a2
+
2
b2
=1
,解得a2=8,b2=4,
所以椭圆C的方程为
x2
8
+
y2
4
=1

(Ⅱ)假设存在斜率为k的直线,其垂直平分线经过点Q(0,3),
设A(x1,y1)、B(x2,y2),AB的中点为N(x0,y0),
x2
8
+
y2
4
=1
y=kx+m
,得(1+2k2)x2+4mkx+2m2-8=0,
则△=16m2k2-4(1+2k2)(2m2-8)=64k2-8m2+32>0,所以8k2-m2+4>0,
x1+x2=-
4mk
1+2k2
,∴x0=
x1+x2
2
=-
2mk
1+2k2
y0=kx0+m=
m
1+2k2

∵线段AB的垂直平分线过点Q(0,3),∴kNQ•k=-1,即
y0-3
x0
•k=-1
,∴-m=3+6k2
代入△>0整理,得36k4+28k2+5<0,此式显然不成立.
∴不存在满足题意的k的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C以坐标轴为对称轴,以原点为对称中心,椭圆的一个焦点为(1,0),点(
3
2
6
2
)
在椭圆上,直线l过椭圆的右焦点与椭圆交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若线段MN的垂直平分线过点(0,
1
5
)
,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区一模)已知以原点为对称中心、F(2,0)为右焦点的椭圆C过P(2,
2
),直线l:y=kx+m(k≠0)交椭圆C于不同的两点A,B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在实数k,使线段AB的垂直平分线经过点Q(0,3)?若存在求出 k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年山东省青岛市胶南市高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知椭圆C以坐标轴为对称轴,以原点为对称中心,椭圆的一个焦点为(1,0),点在椭圆上,直线l过椭圆的右焦点与椭圆交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若线段MN的垂直平分线过点,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2013年北京市丰台区高考数学一模试卷(理科)(解析版) 题型:解答题

已知以原点为对称中心、F(2,0)为右焦点的椭圆C过P(2,),直线l:y=kx+m(k≠0)交椭圆C于不同的两点A,B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在实数k,使线段AB的垂直平分线经过点Q(0,3)?若存在求出 k的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案