精英家教网 > 高中数学 > 题目详情
已知平面直角坐标系xoy中O是坐标原点,A(6,2
3
),B(8,0),圆C是△OAB的外接圆,过点(2,6)的直线为l.
(1)求圆C的方程;
(2)若l与圆相切,求切线方程;
(3)若l被圆所截得的弦长为4
3
,求直线l的方程.
(1)∵O(0,0),A(6,2
3
),
∴直线OA的方程斜率为
2
3
-0
6-0
=
3
3

∴线段OA垂直平分线的斜率为-
3
,又线段AO的中点坐标为(3,
3
),
∴线段OA垂直平分线的方程为y-
3
=-
3
(x-3),即
3
x+y-4
3
=0①,
又线段OB的垂直平分线为x=4②,
∴将②代入①解得:y=0,
∴圆心C的坐标为(4,0),
又|OC|=4,即圆C的半径为4,
则圆C的方程为:(x-4)2+y2=16;
(2)显然切线方程的斜率存在,设切线l的斜率为k,又切线过(2,6),
∴切线l的方程为y-6=k(x-2),即kx-y+6-2k=0,
∴圆心到切线的距离d=r,即
|2k+6|
k2+1
=4,
解得:k=
3±2
6
3

则切线l的方程为:y-6=
3±2
6
3
(x-2);       
(3)当直线l的斜率不存在时,显然直线x=2满足题意;
当直线l的斜率存在时,设斜率为k,又直线l过(2,6),
∴切线l的方程为y-6=k(x-2),即kx-y+6-2k=0,
又弦长为4
3
,半径r=4,
∴圆心到切线的距离d=
42-(2
3
)
2
=2,即
|2k+6|
k2+1
=2,
解得:k=-
4
3

∴直线l的方程为y-6=-
4
3
(x-2),即4x+3y-26=0,
综上,直线l的方程为x=2或4x+3y-26=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面直角坐标系xOy上的区域D由不等式组
0≤x≤
2
y≤2
x≤
2
y
给定,若M(x,y)为D上的动点,点A的坐标为(
2
,1)

(1)求区域D的面积
(2)设z=
2
x+y
,求z的取值范围;
(3)若M(x,y)为D上的动点,试求(x-1)2+y2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,A(cosx,sinx),B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(Ⅰ)求f(x)的最小正周期和对称中心;
(Ⅱ)求f(x)在区间[0,2π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,角α的始边与x正半轴重合,终边与单位圆(圆心是原点,半径为1的圆)交于点P.若角α在第
一象限,且tanα=
4
3
.将角α终边逆时针旋转
π
3
大小的角后与单位圆交于点Q,则点Q的坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宜宾二模)已知平面直角坐标系xoy上的区域D由不等式组
x+y≥2
x≤1
y≤2
给定,若M(x,y)为D上的动点,A的坐标为(-1,1),则
OA
OM
的取值范围是
[0,2]
[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系xOy上的定点M(2,0)和定直线l:x=-
3
2
,动点P在直线l上的射影为Q,且4(
PQ
+
PM
)•(
PQ
-
PM
)+2
PM
OM
=1

(1)求点P的轨迹C的方程;
(2)设A、B是轨迹C上两个动点,
MA
MB
,λ∈R,∠AOB=θ,请把△AOB的面积S表示为θ的函数,并求此函数的定义域.

查看答案和解析>>

同步练习册答案