精英家教网 > 高中数学 > 题目详情

       如图,三棱柱ABC—A1B1C1中, 侧棱与底面垂直,AB=BC=2AA1,∠ABC=90°,M是BC中点。

       (Ⅰ)求证:A1B∥平面AMC1

       (Ⅱ)求直线CC1与平面AMC1所成角的正弦值;

     (Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位

置;若不存在,请说明理由。

 


解:(Ⅰ)连接,连接.

在三角形中,是三角形的中位线,

所以,

又因平面平面

所以∥平面.

(Ⅱ)(法一)设直线与平面所成角为

点到平面的距离为,不妨设,则

因为,

所以.

因为

所以,.

.

(法二)如图以所在的直线为轴, 以所在

的直线为轴, 以所在的直线为轴,以的长度为单位长度建立空间直角坐标系.

,,,,,.设直线与平面所成角为,平面的法向量为.则有,,

,得

.

(Ⅲ)假设直线上存在点,使成角为.

,则.

(舍去),

.所以在棱上存在棱的中点,使成角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案