精英家教网 > 高中数学 > 题目详情

已知函数f(x)满足数学公式,其中a>0且a≠1.
(1)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;
(2)当x∈(-∞,2)时,f(x)+3>0恒成立,求a的取值范围.

解:(1)令logax=t,则x=at


即y=f(x)为奇函数------…
a>1时
∴f'(x)<0∴f(x)为定义域上减函数0<a<1时∴
∴f'(x)<0∴f(x)为定义域上减函数
综上f(x)为定义域上减函数…
∵f(1-m)+f(1-m2)<0∴f(1-m)<-f(1-m2)∴奇函数∴f(1-m)<f(m2-1)
∵减函数∴
(2)∵y=f(x)为减函数∴
若f(x)+3>0恒成立,即f(2)+3>0

分析:(1)由已知中函数f(x)满足,我们可以利用换元法求出函数的解析式,进而判断出函数的奇偶性,和单调性,根据函数的性质我们可以将不等式f(1-m)+f(1-m2)<0化成一个关于m的不等式组,解不等式组即可得到答案.
(2)若当x∈(-∞,2)时,f(x)+3>0恒成立,故我们可将f(x)+3>0恒成立,转化为一个关于a的不等式恒成立问题,解答后,即可求出a的取值范围.
点评:本题考查的知识点是指数函数综合应用,函数的单调性、奇偶性的综合应用,其中熟练掌握函数的性质,将题目中的不等式转化为熟知的不等式式并进行解答是本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*时,求f(n)的表达式;
(2)设bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x) 满足f(x+4)=x3+2,则f-1(1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+f'(0)-e-x=-1,函数g(x)=-λlnf(x)+sinx是区间[-1,1]上的减函数.
(1)当x≥0时,曲线y=f(x)在点M(t,f(t))的切线与x轴、y轴围成的三角形面积为S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]时恒成立,求t的取值范围;
(3)设函数h(x)=-lnf(x)-ln(x+m),常数m∈Z,且m>1,试判定函数h(x)在区间[e-m-m,e2m-m]内的零点个数,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)满足:当x≥1时,f(x)=f(x-1);当x<1时,f(x)=2x,则f(log27)=(  )

查看答案和解析>>

同步练习册答案