精英家教网 > 高中数学 > 题目详情

自M(1,3)向圆x2+y2=1引切线,则切线方程为________

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M(1,3),自点M向圆x2+y2=1引切线,则切线方程是
x=1或4x-3y+5=0
x=1或4x-3y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点B(0,1),直线AD:2x-y-4=0是角A的平分线.直线CE:x-2y-6=0是AB边的中线.
(1)求边AC的直线方程;
(2)圆M:x2+(y+1)2=r2(1≤r≤3),自点C向圆M引切线CF,CG,切点为F、G.求:
CF
CG
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆Mx2+y2-2tx-6t-10=0,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),若椭圆C与x轴的交点A(5,y0)到其右准线的距离为
10
3
;点A在圆M外,且圆M上的点和点A的最大距离与最小距离之差为2.
(1)求圆M的方程和椭圆C的方程;
(2)设点P为椭圆C上任意一点,自点P向圆M引切线,切点分别为A、B,请试着去求
P
A•
P
B
的取值范围;
(3)设直线系M:xcosθ+(y-3)sinθ=1(θ∈R);求证:直线系M中的任意一条直线l恒与定圆相切,并直接写出三边都在直线系M中的直线上的所有可能的等腰直角三角形的面积.

查看答案和解析>>

科目:高中数学 来源:江苏期中题 题型:解答题

在△ABC中,点B(0,1),直线AD:2x﹣y﹣4=0是角A的平分线.直线CE:x﹣2y﹣6=0是AB边的中线.
(1)求边AC的直线方程;
(2)圆M:x2+(y+1)2=r2(1≤r≤3),自点C向圆M引切线CF,CG,切点为F、G.求:的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省南京27中高三(上)学情分析数学试卷(08)(解析版) 题型:解答题

在△ABC中,点B(0,1),直线AD:2x-y-4=0是角A的平分线.直线CE:x-2y-6=0是AB边的中线.
(1)求边AC的直线方程;
(2)圆M:x2+(y+1)2=r2(1≤r≤3),自点C向圆M引切线CF,CG,切点为F、G.求:的取值范围.

查看答案和解析>>

同步练习册答案