精英家教网 > 高中数学 > 题目详情
已知
a
=(t+1,1,t),
b
=(t-1,t,1),则|
a
-
b
|的最小值为(  )
A.
2
B.
3
C.2D.4
|
a
-
b
|=
2 2+(1-t) 2+(t-1) 2

=
2(t-1)2+2

∴当t=1时,|
a
-
b
|有最小值2,
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(t+1,1,t),
b
=(t-1,t,1),则|
a
-
b
|的最小值为(  )
A、
2
B、
3
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

定义区间(m,n),[m,n],(m,n],[m,n)的长度均为n-m,其中n>m.
(1)若关于x的不等式2ax2-12x-3>0的解集构成的区间的长度为
6
,求实数a的值;
(2)已知A={x|
7
x+1
>1},B={x|
x>0
tx+3t>0
tx2+3tx-4<0
,若A∩B构成的各区间长度和为6,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:解答题

已知f(x)=(x∈R)在区间[-1,1]上是增函数,
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2,试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:福建省高考真题 题型:解答题

已知f(x)=(x∈R)在区间[-1,1]上是增函数,
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2,试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案