精英家教网 > 高中数学 > 题目详情
已知椭圆({a>0,b>0})与抛物线y2=2px(p>0)有相同的焦点,点A是两曲线的交点,且AF⊥x轴,则椭圆的离心率是( )
A.
B.
C.
D.
【答案】分析:先把对应图形画出来,求出对应焦点和点A的坐标(都用p写),利用椭圆定义求出2a和2c就可找到椭圆的离心率.
解答:解:由题可得图,设椭圆另一焦点为E,
因为抛物线y2=2px(p>0)的焦点F(,0)
把x=代入y2=2px解得y=±p,
所以A(,p)又E(-,0).
故|AE|==p,|AF|=p,|EF|=p.
所以2a=|AE|+|AF|=(+1)p,2c=p.
椭圆的离心率e===-1.
故选C.
点评:本题考查抛物线与椭圆的综合问题.在作圆锥曲线问题时,用定义来解题是比较常用的方法..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆+=1(a>0)的一条准线方程是x=4,那么此椭圆的离心率是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆+=1(a>0)的一个焦点与抛物线y2=8x的焦点重合,则该椭圆的离心率是(  )

A.            B.          C.                D.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省温州市瑞安中学高二(下)期中数学试卷(理科)(解析版) 题型:选择题

已知椭圆(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年吉林省延边州五中高二(下)期中数学试卷(理科)(解析版) 题型:选择题

已知椭圆({a>0,b>0})与抛物线y2=2px(p>0)有相同的焦点,点A是两曲线的交点,且AF⊥x轴,则椭圆的离心率是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案