如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
a,点E在PD上,且PE∶ED=2∶1.
(Ⅰ)证明:PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角
的大小.
(Ⅲ)在棱DC上是否存在一点F,使BF∥平面AEC?证明你的结论
|
(Ⅰ)证明:因为底面ABCD是菱形, 所以AB=AD=AC=a, 在 知 同理, (Ⅱ)解:作EG∥PA交AD于G,
由 知 作 又PE∶ED=2∶1 所以 从而 (Ⅲ)解法一:以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.
由题设条件,相关各点的坐标分别为 所以 设点F是棱PC上的点, 其中 则 令 即 解得 即 又 解法二:当F是棱PC的中点时,BF∥平面AEC.证明如下: 证法一:取PE的中点M,连结FM,则FM∥CE.① 由 连接BM、BD,设 则O为BD的中点.
所以MB∥OE.② 由①、②知,平面BFM∥平面AEC. 证法二 因为 所以 又 |
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
| PE |
| PD |
| π |
| 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com