精英家教网 > 高中数学 > 题目详情
判断题

(1)若a·b=a·c,则b=c( )

(2)若a·b=0,则a=0或b=0( )

(3)(a·b)ca(b·c)相等( )

(1)× (2)× (3)×

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(任选一题)
①已知函数f(x)=x2-2,g(x)=xlnx,
(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求实数a的取值范围;
(2)试判断方程ln(1+x2)-
12
f(x)-k=0
有几个实根.
②已知f′(x)为f(x)的导函数,且定义在R上,对任意的x都有2f(x)+xf′(x)>x2,试证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC中,∠C=
π
2
.设∠CBA=θ,BC=a,它的内接正方形DEFG的一边EF在斜边AB上,D、G分别在AC、BC上.假设△ABC的面积为S,正方形DEFG的面积为T.
(1)用a,θ表示△ABC的面积S和正方形DEFG的面积T;
(2)设f(θ)=
T
S
,试求f(θ)的最大值P,并判断此时△ABC的形状;
(3)通过对此题的解答,我们是否可以作如下推断:若需要从一块直角三角形的材料上裁剪一整块正方形(不得拼接),则这块材料的最大利用率要视该直角三角形的具体形状而定,但最大利用率不会超过第(2)小题中的结论P.请分析此推断是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届湖南省衡阳七校高一上期末质量检测数学试卷(解析版) 题型:解答题

(本小题满分8分)

已知函数f(x)=|x+1|+ax,(a∈R)

(1)若a=1,画出此时函数的图象.

x

 
(2)若a>1,试判断函数f(x)在R上是否具有单调性.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、9、10班同学做乙题,其他班同学任选一题,若两题都做,则以较少得分计入总分.

(甲)已知f(x)=ax-ln(-x),x∈[-e,0),,其中e=2.718 28…是自然对数的底数,a∈R.

(1)若a=-1,求f(x)的极值;

(2)求证:在(1)的条件下,

(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

(乙)定义在(0,+∞)上的函数,其中e=2.718 28…是自然对数的底数,a∈R.

   (1)若函数f(x)在点x=1处连续,求a的值;

(2)若函数f(x)为(0,1)上的单调函数,求实数a的取值范围;并判断此时函数f(x)在(0,+∞)上是否为单调函数;

(3)当x∈(0,1)时,记g(x)=lnf(x)+x2ax. 试证明:对,当n≥2时,有

查看答案和解析>>

同步练习册答案