精英家教网 > 高中数学 > 题目详情
已知⊙O方程为(x+2)2+y2=4,定点A(2,0),则过点A且和⊙O相切的动圆圆心轨迹方程是
 
分析:设动圆圆心M,⊙O的圆心为B,两圆相切可分为外切和内切,利用两圆相切,两圆心距和两半径之间的关系列出MA和MB的关系式,正好符合双曲线的定义,利用定义法求轨迹方程即可.
解答:解:设动圆圆心M(x,y),半径为r,⊙O的圆心为B(-2,0),半径为2,
因为动圆与⊙O相切,若相外切则有MB=2+r,①,又因为动圆过点A,所以r=MA,②
由①②可得MB-MA=2   ③
同理,若动圆与⊙O相内切,则有MB=r-2=MA-2,即MA-MB=2   ④
由③④得|MA-MB|=2<|AB|=4
故M点的轨迹为以A和B为焦点的双曲线,且a=1,c=2,所以b2=c2-a2=3
所以动员圆心的方程为x2
y2
3
=1

故答案为:x2-
y2
3
=1
点评:本题考查两圆的位置关系的应用和定义法求轨迹方程,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线方程为
x2
a2
-
y2
b2
=1(a>0,b>0)
,椭圆C以该双曲线的焦点为顶点,顶点为焦点.
(1)当a=
3
,b=1时,求椭圆C的方程;
(2)在(1)的条件下,直线l:y=kx+
1
2
与y轴交于点P,与椭圆交与A,B两点,若O为坐标原点,△AOP与△BOP面积之比为2:1,求直线l的方程;
(3)若a=1,椭圆C与直线l':y=x+5有公共点,求该椭圆的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),O为原点,F为右焦点,点M是椭圆右准线l上(除去与x轴的交点)的动点,过F作OM的垂线与以OM为直径的圆交于点N,则线段ON的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2my(m>0)和直线l:y=x-m没有公共点(其中m为常数).动点P是直线l上的任意一点,过P点引抛物线C的两条切线,切点分别为M、N,且直线MN恒过点Q(1,1).
(1)求抛物线C的方程;
(2)已知O点为原点,连接PQ交抛物线C于A、B两点,求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第8章 圆锥曲线):8.7 求轨迹方程(一)(解析版) 题型:解答题

已知⊙O方程为(x+2)2+y2=4,定点A(2,0),则过点A且和⊙O相切的动圆圆心轨迹方程是   

查看答案和解析>>

同步练习册答案