精英家教网 > 高中数学 > 题目详情
3.设a1,a2,a3,a4成等比数列,其公比为2,则$\frac{3{a}_{1}+{a}_{2}}{3{a}_{3}+{a}_{4}}$的值为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

分析 直接利用等比数列的通项公式化简得答案.

解答 解:由题意知,等比数列的公比为2,
则$\frac{3{a}_{1}+{a}_{2}}{3{a}_{3}+{a}_{4}}$=$\frac{3{a}_{1}+{a}_{2}}{{q}^{2}(3{a}_{1}+{a}_{2})}=\frac{1}{{q}^{2}}=\frac{1}{4}$.
故选:C.

点评 本题考查等比数列的通项公式,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在去年某段时间内,一件商品的价格x元和需求量y件之间的一组数据为:
x(元)1416182022
Y(件)1210753
且知x与y具有线性相关关系,
(1)求出y对x的线性回归方程,并预测商品价格为24元时需求量的大小.
(2)计算R2(保留三位小数),并说明拟合效果的好坏.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x,R2=$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{y})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,AB=2,AC=1,∠BAC=120°,O点是△ABC的外心,满足p$\overrightarrow{AO}$+λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$=$\overrightarrow 0$,其中p,λ,μ为非零实数,则$\frac{λ+μ}{p}$=-$\frac{13}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过点(1,2),且在两坐标轴上的截距相等的直线有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=x2+(2a-1)x+1-2a在区间(-1,0)及(0,$\frac{1}{2}$)内各有一个零点,则实数a的取值范围是$(\frac{1}{2},\frac{3}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足3${\;}^{{a}_{n+1}}$=9•3${\;}^{{a}_{n}}$,(n∈N*)且a2+a4+a6=9,则log${\;}_{\frac{1}{3}}$(a5+a7+a9)=(  )
A.-$\frac{1}{3}$B.3C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若ax-1<x(a>0,a≠1)对任意的x∈(0,1)都成立,则实数a的取值范围为(  )
A.(1,2]B.(0,1)∪(1,2)C.(0,1)∪(1,2]D.(2,+∞)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为1的半圆,则该几何体的外接球的体积等于(  )
A.$\frac{{2\sqrt{2}}}{3}π$B.$\frac{{4\sqrt{2}}}{3}π$C.$\frac{{8\sqrt{2}}}{3}π$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{{\begin{array}{l}{-2+x,x>0}\\{-{x^2}+bx+c,x≤0}\end{array}}$,若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点的个数为3.

查看答案和解析>>

同步练习册答案