精英家教网 > 高中数学 > 题目详情

在区间上的最大值为,则=(     )

A.         B.            C.          D.

选B


解析:

上的最大值为且在时,,解之(舍去),选B.

练习册系列答案
相关习题

科目:高中数学 来源:2014届陕西省高二上学期期末考试文科数学试卷(解析版) 题型:解答题

已知其中.(1)求函数的单调区间;(2)若函数在区间内恰有两个零点,求的取值范围;

(3)当时,设函数在区间上的最大值为最小值为,记,求函数在区间上的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省山一中高三第二次统测文科数学 题型:选择题

函数的最大值记为,周期为,则函数在区间上的最大值为(     )

A.1             B.0              C.             D.4

 

查看答案和解析>>

科目:高中数学 来源:2010年湖北省高二12月月考数学试卷 题型:填空题

函数在区间上的最大值为__      __

 

查看答案和解析>>

科目:高中数学 来源:吉林一中2009-2010学年度下学期第一次质量检测高二数学(理)试卷 题型:选择题

若函数在区间上的最大值为2,则它在该区间上的最小值为(  )

A.          B.7              C.10            D.

 

查看答案和解析>>

同步练习册答案