精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式在区间(0,1]上是减函数,则实数a的取值范围是________.

(-∞,0)∪(1,2]
分析:函数的解析式若有意义,则被开方数2-ax≥0,进而根据x∈(0,1]恒有意义,故a≤2,分1<a≤2,0<a<1,a=0和a<0,分类讨论函数的单调性,最后综合讨论结果,可得实数a的取值范围.
解答:若使函数的解析式有意义须满足2-ax≥0
当x∈(0,1]时,须:2-a×0≥0,且2-a≥0
得:a≤2
1<a≤2时,y=2-ax为减函数,a-1>0,故f(x)为减函数,符合条件
0<a<1时,y=2-ax为减函数,a-1<0,故f(x)为增函数,不符合条件
a=0时,f(x)为常数,不符合条件
a<0时,y=2-ax为增函数,a-1<0,故f(x)为减函数,符合条件
故a的取值范围是(-∞,0)∪(1,2]
故答案为:(-∞,0)∪(1,2]
点评:本题考查的知识点是函数的单调性,熟练掌握函数定义域及函数单调性的性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)定义在[-1,1]上,设g(x)=f(x-c)和h(x)=f(x-c2)两个函数的定义域分别为A和B,若A∩B=∅,则实数c的取值集合为
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在(-1,1)上,对于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
),且当x<0时,f(x)>0;
(1)验证函数f(x)=ln
1-x
1+x
是否满足这些条件;
(2)判断这样的函数是否具有奇偶性和其单调性,并加以证明;
(3)若f(-
1
2
)=1,试解方程f(x)=-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax在(O,2)内的值域是(a2,1),则函数y=f(x)的图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1
,对任意x,y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又数列{an}满足a1=
1
2
an+1=
2a
1+
a
2
n

(I)在(-1,1)内求一个实数t,使得f(t)=2f(
1
2
)

(II)求证:数列{f(an)}是等比数列,并求f(an)的表达式;
(III)设cn=
n
2
bn+2,bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)
,是否存在m∈N*,使得对任意n∈N*cn
6
7
lo
g
2
2
m-
18
7
log2m
恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

凸函数的性质定理为:如果函数f(x)在区间D上是凸函数,则对D内的任意x1,x2,…,xn都有
f(x1)+f(x2)+…+f(xn)
n
≤f(
x1+x2+…+xn
n
)
.已知函数f(x)=sinx在(0,π)上是凸函数,则
(1)求△ABC中,sinA+sinB+sinC的最大值.
(2)判断f(x)=2x在R上是否为凸函数.

查看答案和解析>>

同步练习册答案