精英家教网 > 高中数学 > 题目详情

已知函数
(1)若时函数有极小值,求的值; (2)求函数的单调增区间.

解:(1)
时,有极小值,
,解得      ………3分
经检验均可使函数处取极小值………5分
(2)令 即 解得      ………6分
① 当时,为增函数
的单调增区间为                 ………8分
② 当
的单调增区间为                                ……10分
③ 当
为增函数
的单调增区间为         

解析

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省临沂一中高三(上)12月段考数学试卷(文科)(解析版) 题型:解答题

已知函数
(1)若f(x)在x=2时取得极值,求a的值;
(2)求f(x)的单调区间;
(3)求证:当x>1时,

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高二下学期期中文科数学试卷(解析版) 题型:解答题

已知函数

(1)若时,取得极值,求实数的值;   

(2)求上的最小值;

(3)若对任意,直线都不是曲线的切线,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(四)理数学卷(解析版) 题型:解答题

(本小题满分12分)已知函数

(1)若时,在其定义域内单调递增,求的取值范围;

(2)设函数的图象与函数的图象交于两点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求的横坐标,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广西省高三11月月考文科数学试卷 题型:解答题

已知函数

(1)若时函数有极小值,求的值;  (2)求函数的单调增区间.

 

查看答案和解析>>

同步练习册答案