精英家教网 > 高中数学 > 题目详情

如图所示,点C在线段BD上,且BC=3CD,则数学公式=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:利用向量的三角形法则即可得出.
解答:∵BC=3CD,∴
==
=
故选C.
点评:熟练掌握向量的运算法则是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A(不等式选做题)若x>0,y>0且x+2y=1,则
1
x
+
1
y
的取值范围是
 

B(几何证明选讲选做题)如图所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则线段DO的长等于
 

C(坐标系与参数方程选做题)曲线
x=2+cosθ
y=-1+sinθ
(θ为参数)上一点P,过点A(-2,0) B(0,2)的直线记为L,则点P到直线L距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,中心在原点,顶点A1、A2在x轴上,离心率为
21
3
的双曲线C经过点P (6,6),动直线l经过点(0,1)与双曲线C交于M、N两点,Q为线段MN的中点.
(1)求双曲线C的标准方程;
(2)若E点为(1,0),是否存在实数λ使
EQ
A2P
,若存在,求λ值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建四地六校高三上学期第三次月考文科数学试卷(解析版) 题型:解答题

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于B,构成一个三棱锥(如图所示).

(Ⅰ)在三棱锥上标注出点,并判别MN与平面AEF的位置关系,并给出证明;

(Ⅱ)是线段上一点,且,问是否存在点使得,若存在,求出的值;若不存在,请说明理由;

(Ⅲ)求多面体E-AFNM的体积.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三5月模拟考试文科数学试卷(解析版) 题型:解答题

(本小题满分12分)

在边长为的正方形ABCD中,EF分别为BCCD的中点,MN分别为ABCF的中点,现沿AEAFEF折叠,使BCD三点重合于B,构成一个三棱锥(如图所示).

   

(Ⅰ)在三棱锥上标注出点,并判别MN与平面AEF的位置关系,并给出证明;

(Ⅱ)是线段上一点,且, 问是否存在点使得,若存在,求出的值;若不存在,请说明理由;

(Ⅲ)求多面体E-AFNM的体积.

 

查看答案和解析>>

同步练习册答案